Efficient XQuery Support for Stand-Off Annotation

Wouter Alink Raoul Bhoedjang
Nederlands Forensisch Instituut
Laan van Ypenburg 6, 2497 GB

The Hague, the Netherlands

{wouter,raouli@holmes.nl

ABSTRACT

XML annotations are a widely occurring phenomenon in
many application fields, and XML databases should be used
to store and query such data. To provide intuitive and
fast querying of annotations, we make a case for extending
XPath with four new axis steps, that correspond with so-
called StandOff joins, introduced here. The new steps can be
efficiently implemented using a region index and fast loop-
lifted StandOff MergeJoin algorithms. These techniques
were added to the open-source XML DBMS MonetDB/X-
Query, and we show in our evaluation it thus becomes capa-
ble of interactively querying >GB annotation databases.

1. INTRODUCTION

One of the many uses of XML is to store and query anno-
tations, such as speech-recognized text or shot boundaries
detected in audio-visual streams (multimedia information
retrieval), the automatically derived grammatical structure
of sentences in text corpora (natural language processing,
NLP), or for representing and relating the outputs of multi-
ple file system recovery and feature detection tools, run on
the raw image of a confiscated hard drive (digital forensics).
In some applications we even wish to support annotations
of non-contiguous areas (e.g. files reconstructed from a raw
disk image may consist of multiple blocks scattered around
the file system, and grammatical constructs in some natural
languages may be comprised of non-adjacent words).

We should stress here that we have not invented this prob-
lem ourselves; handling multiple hierarchies using concur-
rent markup has for example been treated extensively in
[13, Chapter 31], in the context of the scholarly study of
texts. Also, the NLP community devoted a workshop to the
topic of multi-dimensional markup in XML alone [1].

There have been proposals to store multiple annotation
hierarchies inline in a single document (sometimes even to-
gether with the data to-be-annotated). Example are LMNL
(top right of Figure 1) and GODDAG [14]. In contrast, we
focus on a particular case of XML annotations, where the
object being annotated is stored separately from the XML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

XIME-P 2006, 3rd International Workshop on XQuery Implementation,
Experiences and Perspectives, June 30, Chicago, Illinois

Copyright 2006 ACM 1-59593-465-0/06/0006 ...$5.00.

Arjen de Vries Peter Boncz
Centrum voor Wiskunde en Informatica
Kruislaan 413, 1098 SJ
Amsterdam, the Netherlands

{arjen,bonczi@cwi.nl

Stand—-Off Annotation ample) LMNL Annotation
sample;
<sample> [vidgo}[audio)
<video> [shot id="Intro" start="0:00" end="0:08"}
<shot id="Intro" start="0:00" end="0:08"/> [music artist="U2" start="0:00" end="0:31"}
<shot id="Interview" start="0:08" end="1.04"/> shot]
<shot id="Outro" start="1:04" end="1:34"/> Eshot id="Interview" start="0:08" end="1:04"}
</video> {music] _
<audio> music artist="Bach" start="0:52" end="1:34"}
<music artist="U2" start="0:00" end="0:31"/> {shot]
<music artist="Bach" start="0:52" end="1:34"/> [shot id="Outro" start="1:04" end="1:34"}
</audio> {music]
</sample> {shot]
{video]{audio]
{sample]
0:00:00 0:08:00 0:31:00 0:52:00 1:04:00 1:34:00
time | | | | |]\

et 1 1t 1 I 1 T 1

video Infro |
track \

Interview |

audio| U2 \
track | [Bach

Figure 1: Multimedia Annotation Example

annotations, and regions of interest can be identified by posi-
tion (“StandOff” annotations — see the top left of Figure 1).
This allows annotation of non-XML objects, as well as main-
taining multiple (overlapping) annotation hierarchies, that
each have an easy-to-understand XML layout.

Contributions. The challenge is how a XML DBMS should
store annotations and how these can be queried intuitively
yet efficiently. Our contributions are as follows: (i) a flexible
and configurable XML representation for storing StandOff
annotations in XQuery database systems. (ii) the concept
of StandOff joins to navigate between related XML anno-
tations, and a proposal to include them as four new XPath
axis steps. (iii) efficient algorithms for the integration of
these algorithms in existing XQuery processors®.

Outline. This paper is organized as follows: in Section 2 we
define how StandOff annotation could be represented in a
configurable way. Section 3 introduces four so-called Stand-
Off join operators and discusses various ways to represent
these in XQuery. In Section 4, we discuss efficient implemen-
tation of StandOff joins. This depends on the introduction
of a region index and a region-merge algorithm that allows
selection pushdown. Its loop-lifted nature ensures that it re-
mains efficient (only a single linear index scan) even if the
StandOff Join expressions appear nested in a for-loop with
many iterations. A performance evaluation on the XMark
benchmark shows that this implementation can interactively
query >GB annotation databases. In Section 5 we discuss
related work before outlining our conclusions and future re-
search in Section 6.

!Our work is available in the open source XML DBMS Mon-
etDB/XQuery, see www.monetdb-xquery.org

2. XML STANDOFF ANNOTATIONS

Without loss of generality, we call the object on which
annotations are created the BLOB (Binary Large OBject).
In the video analysis case, the BLOB corresponds with the
multimedia file (e.g. mpeg2 video), whereas the BLOB is a
file containing natural text (e.g. the Bible) in the natural
language processing case, and in the forensic analysis case,
the BLOB is the binary image (exact copy) of the confiscated
hard drive.

The BLOB may have arbitrary content or structure, though
we assume that sub-objects of interest in the BLOB can be
identified using one or more regions. A region consists of
a [start,end] range, where the start and end positions are
from the same data-type (the region includes start and end
and start < end). This data-type must support full order-
ing. Our current implementation assumes the positions to
be machine-representable as 64-bits integers (this supports
the use of regions that consists of file-offsets as well as time-
ranges), but this is not a conceptual restriction.

Area-Annotations. We define area-annotations as those
XML element nodes that directly contain region informa-
tion. Regions can be attached to XML elements (e.g. <foo>
bar</foo>) either by adding “start” and “end” attributes to
it: <foo start="1" end="10">bar</foo>, or by adding one or

more <region> child elements:
<foo><region>
<start>1</start>
<end>2</end>
</region>
bar
</foo>

An XML document may contain many such area- annota-
tions, and the descendants of an area-annotation may again
contain area-annotations. However, we impose no restric-
tions on such sub-annotations (thus, the region of a descen-
dant area-annotation does not need to be contained in the
region of its ancestors that are area-annotations).

The attribute representation for regions is more compact
and less intrusive to the structure of the annotation docu-
ment, while the element representation allows to attach mul-
tiple regions to an element (i.e. to represent non-contiguous
areas). We regard the exact representation a run-time set-
ting. The names “start” and “end” are default, but can be
changed as convenient for the application. The type of anno-
tation of interest (e.g. file-offset, word position or date/time-
stamp) is also highly application dependent. Therefore, our
proposal is configurable to support all these types and rep-
resentations, using the XQuery declare option syntax, part
of the query preamble:

declare option standoff-type "qualified-name"
declare option standoff-start '"qualified-name"
declare option standoff-end "qualified-name"
declare option standoff-region "qualified-name"

The default settings are:

declare option standoff-type '"xs:integer"
declare option standoff-start "start"
declare option standoff-end "end"

If the standoff-region option is specified, the element
representation of regions is used. Note that in the for-
mer case standoff-start and standoff-end define attribute
names, whereas in the latter case, they define element names.

3. QUERYING STANDOFF ANNOTATIONS

In principle, two intervals (=regions) r1 and 72 can be in
13 different relationships with each other [4], ranging at one
end of the semantic spectrum from r;1 disjunctively preced-
ing ro2, to rl disjunctively succeeding r2 at the other end,
with r1 = 72 right in the middle. These relationships play a
crucial role in querying related annotations. EXPath, a pro-
posed language for querying GODDAG markup language,
(where, in contrast to StandOff annotation, all annotations
are stored in interleaved form in the same document) uses
11 such relationships as query predicates [10].

The number of relevant relationships can be significantly
reduced if we abstract from the particular ordering of the in-
tervals and focus on the notions of containment and overlap.
This choice is made for two reasons: first, region ordering
seems to play no role in the StandOff annotation use cases
we encountered [3], and second, is hard-to-define meaning-
fully for non-contiguous area-annotations (i.e. those that
consist of multiple regions); a feature we wish to support.

3.1 StandOff Joins

Taking into account that an area-annotation a consists of
a set of one or more regions ri,..,r, (that do not overlap
nor touch each other), we formally define:

contains(aj,as)

Vre € azdry € ay : ri.start < ro.start < ro.end < ri.end
overlaps(ai,az)

dre € az,r1 € a1 : ri.start < re.end A ri.end > ro.start

Inspired by [6], we now define the following four StandOff
Joins between two node sequences S1 and Sa:

select-narrow(S7, S2) Containment semi-join: return those
area-annotations from Sy that are contained by some
area-annotation in Si.

select-wide(S1, S2) Overlap semi-join: return those area-

annotations from Ss that overlap with some area-annotation

in f;l.

reject-narrow(St, S2) Containment anti-join: return those
area-annotations from S> that are not contained in
any area-annotation in Sj.

reject-wide(S1,S2) Overlap anti-join: return those area-
annotations from Ss that do not overlap with any area-
annotation in S;.

Similar to XPath steps, we expect as the result of these
operators a unique node sequence in document order.

StandOff Joins between U2 and Shots|Matches
select-narrow(//music[artist="0U2"],//shot)|Intro

select-wide(//music[artist="U2"],//shot)|Intro Interview
reject-narrow(//music [artist="U2"],//shot)|Interview Outro

reject-wide(//music [artist="U2"],//shot)|0Outro

The above table lists some example StandOff joins on the
StandOff annotations in Figure 1 and their results (which
are sequences of XML nodes). The second row shows the ex-
pression for selecting all video shots during which U2 music
was played, whereas the expression in first row selects only
those scenes during which this happened all the time. The
third row asks for all shots during which time no U2 music
was played, whereas the last row yields only those scenes
that at some point of time had no U2 music.

declare module standoff = "http://w3c.org/tr/standoff/"

declare function select-narrow($input as xs:anyNodex)
as xs:anyNodex*
{
(for $q in $input
for $p in root($q)//*
where $p/@start >= $q/@start
and $p/@end <= $q/@end

return $p)/.

}

Figure 2: StandOff Joins in a Module

3.2 StandOff XQuery Syntax

The question now is how to denote the StandOff joins
in XPath/XQuery. We focus first on the case where we
have a context node sequence (S1) and where we place no
restriction on the output (S2=//x%).

Alternative 1: XQuery Functions. Without extending
the XQuery standard, we can define a StandOff XQuery li-
brary module that implements the four operators as XQuery
functions, as shown in Figure 2. Note that we look for
matches for $q in the candidate sequence yielded by root ($q)//
and thus only return matches from the same XML fragment.
A final self-axis step /. ensures unique results in document

order. An example use of this notation is select-wide(//music)/

self::shot, which returns all shot elements which region-
wise overlap with some music.

Alternative 2: Functions With Candidate Sequence.
One problem with the previous approach is that in many
cases, queries focus on retrieving annotations of a particu-
lar kind (e.g. most commonly an element name test, such
as music in our example). As finding the result nodes of a
StandOff join in XQuery involves a check against all doc-
ument nodes, it can be beneficial to push down selections,
reducing the possible result nodes to a certain candidate
sequence. Thus, such a candidate sequence (basically, S2)
could be an additional parameter of our StandOff functions,
as shown in Figure 3. Note the additional test on equal
roots is needed to ensure that only nodes from the same
XML fragment match.

The previous example query can now be expressed as
select-narrow(//music,//shot).

Alternative 3: Built-in Functions. One problem with
the previous approaches is that they only work for XQuery
and not for XPath. Another problem is that evaluation cost
of the StandOff joins remains of quadratic order (it compares
all context nodes with all document nodes). This problem
can only be tackled by adding new evaluation algorithms in-
side the XPath/XQuery engine, which then implement the
StandOff functions as built-ins. In Section 4 we will describe
how StandOff joins can be evaluated in almost linear time
using a stack-based region-merge algorithm that exploits the
containment relationships between the context nodes to re-
duce the comparison work (this principle resembles Staircase
Join [9] and Structural Join [2] — but differs since the anno-
tation regions can overlap, something which does not occur
in XML tree numbering schemes).

Alternative 4: XPath Steps. If we already are extend-
ing the XPath/XQuery evaluation engine, we might con-
sider to introduce the StandOff joins as new XPath steps.
The previous example query could then be expressed as

declare function select-narrow($input as xs:anyNodex,
$candidates as xs:anyNodex)
as xs:anyNode*
{
(for $q in $input
for $p in $candidates
where $p/@start >= $q/@start
and $p/@end <= $q/@end
and root($p) = root($q)
return $p)/.
}

Figure 3: Function with Candidate Sequence

//music/select-narrow: :shot. StandOff steps should then
conform to the basic characteristics of XPath steps: they
should return duplicate-free node sequences in document or-
der, and match only nodes from the same XML fragment.

3.3 Proposal: StandOff XPath Steps

We recommend Alternative 4 (new StandOff XPath Steps)
for the following reasons:
(i) Ease of use. As the main use case of the StandOff joins
is to move from a sequence of context nodes to a sequence
of result nodes, we noticed end users feel most comfortable
with XPath step notation, also because StandOff joins are
almost always accompanied by a name-test.
(i) Ease of indexing. XPath steps only match nodes from
the same document, which makes it possible to pre-create
effective indices for them. One could possibly try to define
StandOff axes in the XQuery function approach to return
matches across any XML fragment, though the semantics
of this are only clear for Approach 2 (without a candidate
sequence parameter, it would be unclear from which docu-
ments the candidates should come). This implies, however,
that a global index over the entire document collection must
be maintained, since a-priori it is unknown which documents
will be queried together. This may lead to the index con-
taining many data items that are not needed if a small set of
documents is queried, as well as cause needless transaction
conflicts among documents in case of updates.
(iii) Ease of Implementation. As the StandOff joins share
the same API and main input and output result proper-
ties as the standard XPath steps, they can be easily in-
corporated in the algorithmic infrastructure for executing
XPath expressions already in a XML DBMS. Of particu-
larly important point here is query optimization. XPath
steps with element-tests or other selections may either eval-
uate the step first and then restrict the results according to
the selection, or alternatively, push down the selection into
the path step evaluation. XQuery database systems should
have both evaluation options available and use their query
optimizer to decide between them. StandOff steps as XPath
step directly profit from this infrastructure. In contrast; the
usual handling of builtin-functions (Approach 3) enforces
selection pushdown, which for non-selective predicates may
lead to counter-productive evaluation of large intermediate
result sequences. Of course, the query optimizer could be
changed to treat the StandOff built-in functions in a special
way to optimize them like XPath steps, but this requires
major optimizer changes (at least, that was our experience
in MonetDB/XQuery).

In the following, we focus on the efficient implementation of
our new StandOff XPath axis steps select-narrow, select-wide
reject-narrow and reject-wide in MonetDB/XQuery.

4. IMPLEMENTATION

This section describes how the Standoff XPath axis steps
were implemented and successively optimized in the XML
DBMS MonetDB/XQuery. We first explain the concept of
loop-lifting and the table representation of XQuery results
in MonetDB/XQuery, as this will play a role in the imple-
mentation of our StandOff axis steps as well.

4.1 MonetDB/XQuery

MonetDB/XQuery is an XML DBMS that uses the rela-
tional MonetDB database system as back-end. Its front-end
consists of the Pathfinder compiler, that compiles XQuery
into vanilla relational algebra. Furthermore, when starting
the XQuery server, MonetDB loads a runtime-module that
extends it with a new relational operator, Staircase Join,
that provides fast XPath evaluation on the relational tables
in which the system stores (shredded) XML documents [9].

Pathfinder translates all XQuery expres- YIRS
sions into relational algebra and thus always ~hello”
produces a table as a result. In XQuery, ex- world
pressions yield ordered item sequences as a result, and these
get represented as tables with two columns: pos|item. That
is, to retain the order of the items in the otherwise unordered
relational model, an integer column pos is kept in addition
to the value. The above example shows the table represen-
tation of ("hello", "world").

A central concept of the relational XQuery translation
by Pathfinder is loop-lifting [8]. Each XQuery is translated
bottom-up into a single relational algebra plan consisting
only of the classical relational operators (Select, Project,
Cartesian Product, Join, Aggregation); that is, the XQuery
concept of nested for-loops is fully removed and a single
bulk (=efficient and optimizable) execution plan is created.

for $x in ("twenty", "thirty")

for $y in ("one", "two")
let $z := ($x,8y)
return $z

We demonstrate how this works in the
1

case of the above example XQuery. The T [“twenty”
result of an XQuery at each step of |2 |1 |“twenty”
bottom-up compilation is a relational plan | 3 | 1 | “thirty”
that yields the result sequence for each 411 | "thirty”
nested iteration, all stored together. To
make this possible, these intermediate ta- |1 | | one’
bles have three columns: iter|pos|item, |2 |1 | “two”
where iter is a logical iteration number. i % :one:
If we focus on the execution state in the two
innermost iteration body of the example |RITIREINS
XQuery, there will be three such tables |1 |1 [“twenty”
that represent the live variables $x, $y and | 1 2 “ “one” N
$z respectively. As we can see from the % % tf#iﬁ,y
iter columns, there are four iterations in | 3|1 “thirty”
that scope (numbered from 1 to 4) and | 3|2 | “one”
as expected, $x takes on value "twenty" in |4 | 1 | “thirty”
the first two iterations and "thirty" in the (412] “two”

second two (similarly, $y takes on value "one" in the odd
iterations and "two" in the even ones). Finally, $z is a se-
quence of two values in all four iterations (consisting of the
value of $x followed by the value of $y).

The concept of loop-lifting is also exploited in Staircase
Join. That is, if an XPath axis step is executed inside a
for-loop with n iterations, a naive strategy would call the

original Staircase Join iteratively, causing n sequential scans
over the shredded document table during its execution. It
was shown in [5], that a loop-lifted variant of Staircase Join
performs an order of magnitude faster than the iterative
strategy, if a query contains such nested XPath axis steps.
Loop-lifted Staircase Join is able to compute an XPath axis
step for multiple context node sequences in a single sequen-
tial pass. Note that the input and output of normal Staircase
Join is a sequence of nodes (both represented as pos|item ta-
bles), whereas the input and output of the loop-lifted vari-
ant are iter|pos|item tables, thus containing a set of node-
sequences (one for each iteration).

4.2 Implementing The StandOff Axes

Our initial approach for experimenting with Stand Off query-
ing used the Alternatives 1 and 2 (implementation as an
XQuery library module with user-defined functions). These
implementations will serve as base-lines for our experiments.

4.3 The Region Index

We added a region index to the relational representa-
tion of XML documents. It consists of start|end|id that
is kept clustered on start. Note that we can represent non-
contiguous areas, that consist of multiple regions, by re-
peating the same node-id in several entries in the index.
MonetDB/XQuery uses the pre-order rank as node-id, but
in principle any kind of identifier can be used here.

In case of StandOff steps without selections, the entire
index is the candidate sequence. If a sequence of candidate
node-ids is passed in (which can be produced e.g. using the
element index of MonetDB/XQuery), an index intersection
on node-id is performed to calculate the candidate sequence,
in which the start ordering of the region index is preserved.

4.4 Basic StandOff MergeJoin

A first step is to partition the context sequence per XML
document (fragment). The main algorithm is then repeat-
edly executed for each distinct XML fragment, and the re-
sults concatenated. Thus, all subsequent algorithms only
deal with (input) context sequence and the candidate se-
quence, as described above, that only contain nodes from
the same XML fragment.

The next step is to fetch the [start,end] values for all
context node-ids, and to sort the context sequence on start.

The main algorithm implements a merge semi-join on
start between the context and candidate sequences. It keeps
a list of all “active” context items sorted on their end-value.
A context item is active as long as it can produce result
nodes. In case of select-narrow this means that curcontest . end
> curegndidates -start. If this is no longer so, the context
item is removed. Meanwhile, all candidate nodes that are
contained in active context items are added to the result.
Also, new context items are only added if they are not con-
tained in an item already in the list from the same iteration.

Note that StandOff MergeJoin bears strong resemblance
with algorithms for computing the descendant step in region
encodings, such as Structural Join [2], and Staircase Join [9].
However, these other algorithms strongly exploit the tree
properties of such document encodings such that we cannot
use them as-is on overlapping annotation regions.

The behavior of select-wide, reject-narrow and reject-wide
is highly similar. We omit a detailed algorithm here but dis-
cuss that in the following for the loop-lifted variant.

Y o o 1 add c; c list (line 8) 6 skip ro (lines 32-35)
oontext| dert | 4] 2 add (iterl, r1) to result (lines 32-34)| remove co from list (line 31)
iter 2 @ g 3 push cz on list (line 41) 7 add c4 to list (line 41)

4 skip c3 (lines 11-18)| 8 skip r3 (lines 21-24)

R i i R 5 remove c; from list (line 31) 9 add (iterl, r4) to result (lines 32-34)
10 exit (line 38)

RO
G 606 ®© & 006

Figure 4: Execution Trace of Loop-Lifted StandOff MergeJoin

1 [iter,region] 1l_select_narrow_join(

2 [iter,start,end] context,

3 [pre,start,end] candidates) {
4 result := [,];

5 i := 0; /* iterate over context */

6 j := 0; /* iterate over candidates */

7 active_items = [,]; top := 0;

8 active_items[top++] = contextl[il;

9 while (i < |context|) {

10 next_i :=1i + 1;

11 /* skip self-overlapping regions in same iter */
12 while(next_i < |contextl|) {

13 tmp := find_active_item(context[next_i].iter)
14 if (tmp && tmp.end <= context[i].end)

15 next_i++;

16 else

17 break;

18 }

19 next_start := (next_i < |context]|) ?

20 context [next_i].start : MAX_INT;

21 /* skip non-possible candidates */

22 while (j < |candidates| &&

23 candidates[j].start < context[i].start)

24 j++;

25 /* analyze potential candidates */

26 while(j < |candidates| &&

27 candidates[j].start < next_start) {

28 /* trim the active items list when needed */
29 while(top > 0 &&

30 active_items[top-1].end < candidates[j].start)
31 top—-;

32 for (k := 0; k < top &&

33 active_items[k].end >= candidates[j].end; k++)
34 result += (k.iter, candidates[j])

35 j++;

36 }

37 if (j == |candidates|)

38 break;

39 /* add next context item to active_items */

40 i := next_i;

41 replace_active_items_with(context[i]);

42 }

43 return result;

44 }

Listing 1: pseudo code for loop-lifted select-narrow

4.5 Loop-lifted StandOff MergeJoin

Listing 1 shows code for the loop-lifted select-narrow-
step. The input for the step are iter|start|end context
items sorted on start (the iter-value is not present in the
basic algorithm, and serves to separate the different input
context sequences in the loop-lifted version) and start|end
candidate items.

The code loops over all the candidate items as long as
there are context items or candidate items available (line 9
and 37-38). The algorithm maintains a list of active context
items. Lines 11-18 skip over context items that are com-
pletely contained in the active items, because these nodes
will not yield any additional results. If we ran out of context

for $b in doc("xmark110MB.xml")
//site/select-narrow: :open_auctions
/select-narrow: :open_auction
return <increase> {
$b/select-narrow: :bidder[1]/select-narrow: :increase
} </increase>

Figure 5: StandOff XMark Query 2

items our next context item will be infinitely far away (lines
19-20), thus we can safely skip over all candidate regions
that fall in between context items. Afterwards, line 26-36
will be looping over candidate items as long as the list of ac-
tive items is valid (no new context items need to be added
to the list). The active items list will shrink by removing
items which cannot participate in new results anymore(29-
31). This happens when the start-value of the current can-
didate comes after the end-value of such a context item. For
all candidates strictly contained in an active context item a
result is produced (lines 32-34). After having processed all
possible candidates until the start of the next context item,
the new context item is added to the list (40-41).

The listed algorithm produces matching combinations of
iters and regions. Depending on whether the annotation
mode supports areas of multiple regions, some post-processing
(omitted) occurs that maps these into node-ids (unique and
in document order per iter).

We illustrate how the loop-lifted
StandOff MergeJoin operates on
the context and candidate input
Figure 4 con-

r3| 40 | 60
r4| 65 | 70 | tables to the left.

context candidales taing an execution trace; the left

part shows the state of the active context item list, while
the right part shows the steps of the algorithm.

4.6 Experimental Evaluation

We evaluated the performance of the various implemen-
tations of the StandOff axis steps on a StandOff version
of the XMark benchmark [12]. We modified the XMark
document to a StandOff document, by putting the textual
contents of the auctions document in a separate file (the
BLOB), whereas the auctions document contains for each
element node instead of the text node a region (in attribute
format) that refers to the BLOB. The order in which the
element nodes appear has also been permuted on a coarse
level, thereby removing some of the original parent-child re-
lationships. Queries 1, 2, 6, and 7 of the XMark benchmark
were rewritten to use StandOff annotation. This means that
descendant and child steps were replaced by select-narrow.
Figure 5 shows the translation for XMark query 2.

Our benchmark platform was an Athlon 3800+ (2.4GHz)
with 2GB RAM and two 100GB SATA drives running Linux
2.6. We tested against the released version 0.10 of Monet-
DB/XQuery that contains the StandOff extensions. In our
experiments, we compared the three alternatives:

XMark Q1 XMark Q2

XMark Q6

XMark Q7

11MB 55MB 110MB 550MB 1100MB 55MB 110MB 550MB 1100MB 11MB

Figure 6: Performance on StandOff XMark Q1, Q2, Q6,

XQuery Function with Candidate Sequence. Here,

E—
-

55MB

the Standoff axis steps are implemented as user-defined XQuery

functions. We use the variant where a candidate node se-
quence can be passed as a restriction. In the XMark queries,
there is always a test on element name, so such a restriction
is possible. The variant without Candidate Sequence was
also tested, and produced DNF (Did Not Finish within an
hour) on all queries and all tested document sizes (11MB
and larger). We can see though, that even with the Candi-
date Sequence, this variant is one to two orders of magnitude
slower than the alternatives.

Basic StandOff MergeJoin. This variant performs very
well on XMark Q1, but produces DNF results on Q2. The
main difference between these two queries is that the path
steps in Q2 appear in a for-loop. In that case, the Basic
StandOff algorithm is called for each iteration, leading to
repeated full scans of the region index.

Loop-Lifted StandOff MergeJoin. This variant is clearly
superior, beating the other variants on most queries by one
or more orders of magnitude. In fact, the overall perfor-
mance of select-narrow is less than 20% slower than the
loop-lifted descendant Staircase Join. These results under-
line the significance of the loop-lifting technique and confirm
the results obtained on loop-lifting Staircase Join in [5].

5. RELATED WORK

Early notion of multi-dimensional markup stems from the
SGML era (the CONCUR feature) and the Text Encod-
ing Initiative (TEI) [13]. Thompson and McKelvie later
introduced the notion of standoff annotation [15]. Other
attempts have been made to create a dialect of XML to rep-
resent multiple annotations inline, for example the general
ordered-descendant directed acyclic graph (GODDAG) and
LMNL [14]. For the GODDAG annotation language there
has also been a proposal for a query language called EX-
Path [10]. Ogilvie issued in [11] an indirect request for a
simple XQuery based extension to allow for stand-off query-
ing. The axis steps we introduced in this paper behave ex-
actly like Ogilvie’s overloaded descendant step. Finally, the
loop-lifted StandOff joins introduced here resemble explicit
sort-merge joins defined for temporal databases [7]. Loop-
lifted StandOff join is a particular variant, as it implements
a semi-join and is nested: instead on node-sets it semi-joins
sets of node-sets. This special semantics is exploited in its
stack-based algorithm. Like suggested in [7], it could be
beneficial to substitute the stack (from which we currently
may delete elements in the middle — so it really is a list) by
a heap, in data-distributions that cause it to grow long.

6. CONCLUSION AND FUTURE WORK

We proposed the use of XML for representing multiple
overlapping annotation hierarchies, defined four StandOff

XQuery Function with
Candidate Sequence

& Basic StandOff
MergeJoin

O Loop-Lifted StandOff
MergeJoin

110MB 550MB 1100M8 1IMB 55MB 110MB 550MB 1100MB

and Q7 (in sec.)

join operators for querying such annotations, and proposed
to add these as new XPath axis steps. As an alternative,
these new operators could also be supported in XPath/X-
Query processors by means of built-in functions, but this is
less intuitive for end users and provides less flexibility to the
XQuery optimizer to handle selection pushdown.

We outlined a family of new algorithms, called StandOff
MergeJoin, that can execute these new XPath axis steps effi-
ciently by making use of an index on the region annotations.
The algorithms were implemented in MonetDB/XQuery and
released in open source. We evaluated the performance on
a StandOff version of the XMark benchmark, which shows
that the loop-lifted StandOff MergeJoin is highly efficient
and can query >GB annotation documents interactively.

We will continue to use our XQuery extensions to manage
and query annotations in the areas of multimedia retrieval,
natural language processing and digital forensics, and are on
the lookout for more application areas of this versatile tech-
nology (e.g. temporal annotations in MPEG-7 and SMIL,
but also genome sequence annotations in bioinformatics).
Such new application experiences may bring further insight
regarding the potential need for more than four axis steps,
as well as the usability of the current solution.

REFERENCES

D. Ahn. NLP-XML workshop on multi-dimensional markup in
natural language processing (in conjunction with EACL 2006).
S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M Patel,

D. Srivastava, and Y. Wu. Structural Joins: A Primitive for
Efficient XML Query Pattern Matching. In ICDE, 2002.

W. Alink. XIRAF - an XML information retrieval approach to
digital forensics. Master’s thesis, Univ. Twente, October 2005.
J.F. Allen. Maintaining Knowledge about Temporal Intervals.
Communications of the ACM, 26(11):832-843, 1983.

P. Boncz, T. Grust, M. van Keulen, S. Manegold, and

J. Teubner. MonetDB/XQuery: A fast xquery processor
powered by a relational engine. In SIGMOD, 2006.

F.J. Burkowski. Retrieval Activities in a Database Consisting of
Heterogeneous Collections of Structured Text. In SIGIR, 1992.
Dengfeng Gao, Christian S. Jensen, Richard T. Snodgrass, and
Michael D. Soo. Join operations in temporal databases. VLDB
Journal, 14(1):2-29, March 2005.

T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In
VLDB, Toronto, Canada, 2004.

T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach
a Relational DBMS to Watch its (Axis) Steps. In VLDB, 2003.
I.LE. Tacob and A. Dekhtyar. Towards a Query Language for
Multihierarchical XML: Revisiting XPath. In WebDB, 2005.
Paul Ogilvie. Retrieval using structure for question answering.
In Twente Data Management Workshop (TDM), 2004.

A. Schmidt, F. Waas, M.L. Kersten, M.J. Carey, I. Manolescu,
and R. Busse. XMark: A Benchmark for XML Data
Management. In VLDB, 2002.

C. M. Sperberg-McQueen and L. Burnard. Guidelines for
Electronic Text Encoding and Interchange. Technical report,
1992.

C.M. Sperberg-McQueen and C. Huitfeldt. GODDAG: A Data
Structure for Overlapping Hierarchies. Lecture Notes in
Computer Science, 2023:139 — 160, 2004.

H.S. Thompson and D. McKelvie. Hyperlink semantics for
standoff markup of read-only documents. In SGML Europe’97.

7.
(1
(2]

(3]
4]
(5]

6]
(7]

8]
19
(10]
(11]

(12]
(13]
(14]

(15]

